
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND    ADVANCED RESEARCH IN COMPUTING  

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016                        ISSN: 2320-1363 
 

   1 
                                                                        

 

WiFi Based Communication and Localization of an Autonomous 

Mobile Robot for Refinery Inspection 

Ms.P.Supraja Ms.D.Siva Jyothi 

 

Abstract— Oil and gas refineries can be a 

dangerous environment for numerous 

reasons, including heat, toxic gasses, and 

unexpected catastrophic failures. In order to 

augment how human operators interact with 

this environment, a mobile robotic platform 

is developed. This paper focuses on the use 

of WiFi for communicating with and 

localizing the robot. More specifically 

,algorithms are developed and tested to 

minimize the total number of WiFi access 

points (APs) and their locations in any given 

environment while taking into consideration 

the throughput requirements and the need to 

ensure every location in the region can reach 

at least k APs. When multiple WiFi APs are 

close together, there is a potential for 

interference. A graph-coloring heuristic is 

used to determine AP channel allocation. In 

addition, WiFi fingerprinting based 

localization is developed. All the algorithms 

implemented are tested in real world 

scenarios with the robot developed and 

results are promising.  

I. INTRODUCTION  

Removing humans from inhospitable 

environments is often desirable. For 

instance, in the oil and gas industry, during 

inspection, maintenance, or repair of 

facilities in a refinery, people may be 

exposed to severely high temperatures 

(+50◦C) for an extended period of time, to 

toxic gasses including methane and H2S, 

and to unexpected catastrophic failures. One 

way to remove human exposure from these 

types of situations is to instrument an oil 

refinery with a wireless sensor network [1], 

which attaches a wireless sensor on every 

gauge and valve. Unfortunately, this 

approach is expensive and labor-intensive, 

let alone wireless sensors are failure prone. 

Hence, maintenance of the network and 

reliably collecting data from the network are 
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extremely challenging. We, therefore, resort 

to a different approach that aims to augment 

how the human operators interface with the 

physical world. A mobile robotic platform is 

a rational analog to a physical human - it can 

move through an environment either 

autonomously or through tele-operation 

while sensing its surroundings with an array 

of sensors. However, further constraints are 

applied when introducing physical systems 

into an oil and gas environment. All devices 

deployed must   

 

 

Fig. 1. A refinery inspection mobile robot 

Using an autonomous robotic system for an 

offshore oil and gas refinery has been 

proposed before [2], [4]. However, no 

detailed studies on WiFi communication and 

localization issues have been reported .In 

this paper, wefocus on the WiFi aspects 

when using a mobile robotic platform in an 

oil refinery. More specifically, we consider 

the two problems: WiFi communication and 

localization. First, while the robot is mobile, 

an operator must be able to communicate 

with it to receive sensor data collected from 

the refinery (e.g., images and acoustic data) 

as well as send it various commands that 

either manipulate the robot or the arm, 

request certain specific information, or ask it 

to move in a certain way; however, most 

refineries lack a wireless network 

infrastructure. Therefore, WiFi access points 

(APs) must be strategically placed 

throughout an environment to minimize the 

number of units required to achieve full 

coverage needed for communication. 

Second, in order for a robotic system to be 

autonomous, it must have an accurate 

understanding of its location. Since an oil 

refinery often is comprised of tall structures 

made of steel, GPS may not always be 

available, WiFi based localization becomes 

essential. It complements localization 

methods using other sensors built in a 

robotic system. The work presented in this 

paper makes the following contributions. • 

We have conducted thorough studies of 

WiFi signal propagation properties in both 

indoor and outdoor environments, which 
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forms the basis for WiFi AP deployment and 

communication. • We have implemented an 

AP placement algorithm to achieve single 

coverage (i.e., every point in a site can 

communicate with at least one WiFi AP). • 

For better reliability and localization, we 

have implemented a k-coverage AP 

placement algorithm (i.e., every point in a 

site can communicate with at least k WiFi 

APs), where k > 1. • We have implemented 

a channel allocation algorithm to minimize 

interference from neighboring APs. • We 

have implemented a WiFi localization 

technique and tested it on the mobile robotic 

platform in both indoor and outdoor 

environments. The rest of the paper is 

organized as follows. Section II discusses 

related work regarding wireless 

communication in an oil refinery. A WiFi 

AP placement technique is discussed in 

Section III. A WiFi localization technique is 

discussed in Section IV and implemented 

and tested on an autonomous robotic system. 

Finally, Section V presents concluding 

remarks.  

II. RELATED WORK 

 In this section, we only discuss related work 

in providing wireless communication in an 

oil refinery. We defer the discussion of the 

work related to specific aspects of WiFi 

communication and localization to later 

sections. Previous work proposes to use 

wireless sensor networks (WSNs) for remote 

monitoring to detect leaks of harmful by-

products of oil refineries. While WSNs are 

capable of being equipped with an array of 

sensors, the major deficiency of WSNs is 

battery life as well as their failure prone 

nature. A robotic mobile platform is 

developed to provide secure and reliable 

two-way wireless communication at a lower 

cost and less maintenance than a WSN. In 

[4], localization is performed through a form 

of Simultaneous Localization and Mapping 

(SLAM). In localization is performed 

through fusing the inertial navigation system 

(INS) and infrared sensor (IR) with 

reflective tapes to characterize specific 

shaped objects. Communication is 

established through WiFi to an operator 

control station or through Bluetooth to a 

nearby handheld device. While both systems 

use WiFi for communication and 

localization, none of them provide any 

details. In contrast, our work introduces an 

autonomous system capable of localizing to 

a sub-meter level in indoor or outdoor 

environments. We provide detailed 



 
 

   4 
                                                                        

 

discussion of the technical details and 

extensive performance studies.  

III. WIFI COMMUNICATION 

 Two types of data are communicated 

between the robot and the control station. 

Control information has the higher priority 

as it informs the robot how to act and react, 

i.e.: whether it is direct movement 

commands through tele operation or more 

general commands such as informing the 

robot of a new destination for inspection. 

Tele-operation and emergency stop are two 

operations that require realtime 

communication and must be executed by the 

robot regardless of the state of sensor 

information. For example, if the operator 

receives a report describing low pressure in 

a tank, the robot should be able to drive 

upstream of the tank, begin to transmit 

acoustic information, and then drive along 

the pipe to determine if there is a visible 

leak. If the communication between the 

robot and control station times out, the robot 

halts - this is to ensure safety of the 

surrounding environment and of the robot 

itself. Therefore, communication between 

the systems must be reliable. Since an oil 

refinery typically does not have WiFi 

infrastructure available, we need to 

determine the minimum number of WiFi 

APs needed and where to deploy them so 

that the entire region is covered. When 

multiple APs are located close to each other, 

we need to determine how different channels 

should be used by each AP to avoid 

interference. The following subsections 

describe the algorithms used for these 

purposes. A. AP Placement When 

determining placement of APs in a given 

environment, the required minimum 

throughput that supports both control 

information and sensor information must be 

maintained in order to ensure 

communication at every location in the 

environment. This requires that at any time, 

the mobile robot be in communication range 

of at least one AP. While a dense network 

dispersed through an environment can 

achieve this, it is costly. Therefore, the 

single-coverage WiFi AP placement 

problem is to determine the minimum 

number of APs and their locations so that 

each location in the environment can reach 

at least one AP, given a region and 

throughput needs specified by the 

application. The single-coverage WiFi 

placement problem is NPhard  and belongs 

to a large class of problems known as 

“Coverage Problems”. A classical example 



 
 

   5 
                                                                        

 

of which is the “Art Gallery Problem” 

Several heuristics have been proposed 

before [7], [8]. We have implemented an 

algorithm based on 

 

Fig. 2 shows the algorithm flow.  

Environment information, consisting of the 

dimensions of a given area and a list of 

object locations, and a minimum throughput 

requirement are passed into the algorithm. A 

2D grid-system map is then generated 

consisting of object and non-object nodes, 

where an object node is defined as a node 

whose location correlates to an occupied 

space such as a wall. Each non-object node 

is considered a candidate location for AP 

placement. The algorithm considers every 

candidate location during each iteration by 

mapping the coverage of the APs already 

chosen as well as the propagation of the new 

AP. The signal of the new AP is propagated 

until it reaches the cut-off distance or an 

object-node is encountered. This hard 

encounter cut-off is used because in an oil 

and gas refinery, the objects that are 

encountered are typically large and made of 

steel. The best AP for that iteration is then 

chosen as the one that provides the 

minimum average distance between all 

uncovered nodes. That AP is then added to 

the list of best APs. Once all nodes have 

been covered, the list of best AP locations is 

returned. 

Environment Information 

Throughput Requirement of Entire Region 

1: Create pool of candidate access points 

2: Determine best access point from pool 

3: Switch on APbest and add to set of access 

points 

4: Coverage requirement met? 

5: Output list of best access points 

Yes 

xNoX 

In this algorithm, a key step is to predict the 

signal propagation of a potential AP. In 
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order to have a clear picture on how WiFi 

signal propagates in a specific environment, 

we have conducted thorough studies in both 

indoor and outdoor environments. Note that, 

similar studies need to be conducted in a 

target environment. In the following, we 

discuss the methodologies taken and results 

obtained in our studies. An oil and gas 

refinery can be thought of as a combination 

of both an indoor and an outdoor 

environment due to the nature of the layout, 

so a series of studies were conducted to 

understand how WiFi signals propagate in 

both indoor and outdoor environments. 

Specifically, we study the impact of 

distance, transmission power, or speed of the 

mobile robot on the upper and lower bounds 

of received signal strength indicator (RSSI), 

bandwidth, and packet delivery ratio. Fig. 3 

depicts the impact of distance and 

transmission power on the received signal 

strength and bandwidth in the Brown Hall 

 (b) Average bandwidth at three 

transmission powers in an indoor 

environment. 

Fig. 3. Received signal strength and 

bandwidth vs distance at three transmission 

powers in an indoor environment 

of the Colorado School of Mines (CSM) 

campus. Similar trends are observed in an 

outdoor environment: a soccer field at CSM. 

Figures are omitted due to page limitations. 

These results show that in order to provide a 

network that is capable of supporting a 10 

Mbps throughput, a RSSI of −70 dbm (80 

m) must be used. We will use this as the cut-

off distance. We have tuned the classic Log-

Distance Path-Loss Model (1) to fit our 

experimental data (Fig. 4). PLd[dbm] = 

PL0[dbm] + 10∗n∗log(d/d0), (1) where 

PL[dbm] is the calculated signal strength, 

PL0[dbm] is the relative signal strength at a 

distance of d0 (4.572 m or 15 ft), n is the 

log-loss exponent (1.8), and d is the given 

distance. Therefore, in the AP placement 

algorithm, we use this propagation model to 

determine signal propagation of each 

potential AP. 
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Fig. 4. Received signal strength vs distance 

for both indoor and outdoor environments 

with the log-distance path-loss propagation 

model results. 

We have tested the single-coverage AP 

placement algorithm at Colorado School of 

Mines 3rd floor Brown Building (Fig. 5(a & 

b)). The building consists of a large hallway, 

approximately 3 m by 45 m with numerous 

classrooms and an open area in the center. 

The building material is mostly sheetrock. 

The algorithm created a 72 by 10 grid-point 

map using a grid-length of 0.9144 m (3 ft), 

which resulted in the requirement of 6 APs 

Table I. Fig. 5(a) shows the position of AP 

placement (Xi), where i is the placement 

order. This single-coverage deployment 

ensure that at any location in the given 

environment, communication between the 

robotic mobile system and the operator 

control station is possible. In order to better 

support WiFi localization, a coverage 

greater than one is required. In other words, 

we need to determine how to cover an area 

with minimal number of APs so that each 

point in the area is covered by at least k 

APs, where k > 1. 

This is a very different problem from 

existing work on placement of multiple 

WiFi APs whose focus is typically for 

handling a large number of mobile clients or 

nonuniform client load. Techniques such as 

cell dimensioning and dynamic load 

balancing are developed [9]. However, the 

k-coverage AP placement problem bears 

certain similarity with k-coverage sensor 

deployment in WSNs, which has been 

studied extensively in the community [10]. 

The difference between the two problems is 

that in WSNs, multihop communication is 

often needed and also sensors may have 

different sleep schedule. We, hence, adapted 

a greedy approach from [11] and [12] that 

attempts to maximize the net coverage (also 

called K-benefit) introduced by the new AP 

or sensor. The K-Benefit of a new AP P is 

defined as: (V (M ∪P,K)−V (M,K))/(|M 

∪P|−|M|), where M is the existing AP set. 
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V (S,K) =X e�E max K,X s�S 

(δ (e,s))!!, (2) where S is the set of AP 

candidate locations, K is the required k-

value, E is the region of interest, and δ(e,s) 

is 1 if node e is covered by AP s. The 

algorithm shown in Fig. 2 for single 

coverage is modified in the following ways: 

1) Step 2: the algorithm instead distributes 

the signal of the candidate AP and 

maximizes the count of the newly covered 

nodes that are under the k-covered 

requirement for every candidate location as 

seen in (2). 2) Step 3: The candidate AP that 

produces the largest KBenefit is then added 

to the set of APs that cover the region - its 

coverage is added to the final map. 3) Step 

4: The algorithm continues to iterate until all 

locations have been at least k-covered. Fig. 

5(b) shows the coverage count for k = 2, 

where Xi marks the location of an AP and i 

is the placement order. This configuration is 

repeated k times. 

B. Channel Allocation In the previous 

section, we defined a heuristic to determine 

the placement of APs for single coverage as 

well as kcoverage. Because of the nature of 

wireless signal propagation, APs will 

interfere with other neighboring APs. In 

order to prevent them from interfering, 

neighboring APs must be assigned to 

different channels. WiFi operates in the 

frequency range of 2.4 GHz to 2.485 GHz. 

Within this 85 MHz band, WiFi defines 11 

partially overlapping channels. Any two 

channels are non-overlapping if and only if 

they are separated by four or more channels. 

In particular, the set of channels 1, 6, and 11 

is the only set of three non-overlapping 

channels [13]. Therefore, we need to assign 

the minimum number of channels for all the 

APs deployed while making sure no two 

nearby APs (i.e., potentially may interfere 

with each other) are assigned to the same 

channel. The channel allocation problem can 

be formulated into the classic NP-hard graph 

coloring problem: each AP represents a node 

in an interference graph and if the coverage 

of two APs overlap, a bi-directional edge is 

added between the two nodes. We borrow a 

heuristic from [14] that attempts to color the 

most nodes in one iteration before 

considering the next color. During each 

iteration, the uncolored node with the 

smallest index is chosen and colored with 

the current iteration color. Interference is 

then calculated for all 2+ hop nodes of the 

current node, where if a 2+ hop node is a 

child of another 2+ hop node, the 

interference count of those nodes are 
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increased by one. Once the interference for 

every 2+ hop node has been calculated, the 

node with the smallest interference count is 

colored the current iteration color and 

children of the newly colored node are 

removed from the 2+ hop list. Once this list 

is empty, the heuristic moves onto the next 

color iteration. The heuristic continues to 

iterate until all nodes have been colored. 

Fig. 5. AP placement results for CSM’s 

West Brown Building 3rd floor 

We have tested the channel allocation 

algorithm on the AP placement determined 

in  

 

Fig. 5(a), 4 channels are allocated as seen in 

Table I. 

 

 

 

IV. WIFI LOCALIZATION 

 Now that the WiFi infrastructure has been 

deployed, we can use it for localization. 

Indoor WiFi localization has been studied 

extensively provides a survey of wireless 

indoor positioning techniques. When 

performing localization through a WiFi 

network, two approaches are generally 

taken: signal propagation modeling and 

WiFi fingerprinting]. Research shows that 

the signal propagation model requires a very 

accurate model tuned to a specific 

environment and tends to result in a lower 

localization accuracy than the fingerprinting 

method Therefore, we have chosen to use 

the WiFi fingerprinting method. WiFi 

fingerprinting has also been studied for 

outdoor localization, in particular in urban 

canyons. Due to the impact of pedestrian 

and car traffic, the accuracy drops 

significantly in outdoor environments The 

process of WiFi fingerprinting can be very 

tedious, so presents an autonomous mobile 

robot approach for indoor localization where 

Simultaneous Localization and Mapping 

(SLAM) is used to create and update the 

positions in the WiFi fingerprint database for 

geo-locating people. Visual localization 

through SLAM has also been studied 
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extensively presents a survey of SLAM for 

urban ground vehicles. WiFi fingerprinting 

based localization consists of two phases: 

offline and online. In the offline phase, a 

collection of fingerprints is taken at unique 

locations and stored in a database. A 

fingerprint is comprised of each surrounding 

AP’s BSSID and RSSI. In our work, the 

fingerprint database was constructed in the 

following way. We have chosen to use a 

spacing of 1.5m in between fingerprint 

locations in order to ensure that each unique 

location of the robotic platform has a 

corresponding fingerprint in the database, 

considering that the size of the robotic 

platform is about 1.2m by 0.8m. To increase 

the accuracy of WiFi fingerprinting, states 

that a reading in each orientation at every 

location must be taken. However, in an oil 

and gas facility, we can assume that the 

robot will never drive perpendicular to a 

path, so we have only taken fingerprints in 

two orientations along defined paths and 

then four orientations at corners. WiFi signal 

propagation becomes very unstable at larger 

distances in terms of the reliability of the 

RSSI as determined from our experiments. 

To address this, we have chosen to only 

include APs whose RSSI is greater than -70 

dbm. In the online phase, the fingerprint 

database is used to determine location of the 

robot by finding the best matching of current 

visible APs along with their RSSI. More 

specifically, the robot polls the surrounding 

WiFi APs in order to create its current 

fingerprint, only considering APs with an 

RSSI better than -70 dbm. These values are 

then compared to the fingerprint database 

using the averaged Euclidean distance in 

signal space (3).N X j=1 

(RSSIj(x,y)−RSSIj(xi,yi))2, (3) where Z is 

the fingerprint currently observed by the 

robot composed of L APs at an unknown 

position (x,y), and Zi is the fingerprint from 

the database for position (xi,yi) composed of 

M APs. N is the total number of APs in 

Z∪Zi. RSSj(xi,yi) is the mean RSSI value of 

location (xi,yi) for AP “j”. Our approach is 

modified from [17], where the entire set (Z 

∪Zi) is considered when determining the 

Euclidean distance in signal space instead of 

only using the APs in Z, which allows for a 

more accurate fingerprint match as Z might 

be a subset of numerous Zis. If an AP exists 

only in one list, its value is compared 

against the cut-off value of -70 dbm. The 

averages of the number of comparisons 

between the current fingerprint and the 

database fingerprints are sorted in non-

decreasing order. The K closest neighbors’ 
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locations are then averaged to determine the 

location of the robot. We deployed the 

system at the Petroleum Institute in Abu 

Dhabi, UAE. The robot drove through a 12 

m by 46 m rectangular path on the third 

floor of Ruwais Building - a sheetrock 

academic building. This test was performed 

over two days. In order to determine the 

ground truth location of the robot, physical 

markers were manually placed at the robot’s 

location every 5 seconds. Fig. 6 shows the 

resulting absolute position error for each 

location across the 7 cycles. We achieved an 

average accuracy of 2.30 m across 7 loops 

(cycles) with remote control of the robot. 

Due to a mismatch in fingerprinting, some 

locations (e.g., Location 3), have a high 

position error. The error in location 8 is due 

to a physical change in environment during 

testing, i.e.: cabinets from classrooms were 

moved into the hallway in between WiFi 

was never intended to be the only source of 

localization, instead it should befused with 

other localization sensors available on the 

robot. We have implemented an Extended 

Kalman Filter to fuse results from the 

Inertial Navigation System (INS), compass, 

GPS, WiFi, and a fiducial marker system. A 

validation gate is applied to each 

localization sensor to help reject outlier 

measurements. For a detailed explanation of 

this implementation, interested readers may 

refer to [21]. Table II shows the results of 

fusing different sets of localization sensors. 

By fusing INS with the WiFi, we were able 

to achieve an absolute position error of 1.02 

m using a WiFi validation gate value of 0.5. 

Accuracy was further increased by fusing 

INS, WiFi, and the fiducial marker system 

(discussed in [21]) to achieve an absolute 

position error of 0.43 m using a WiFi 

validation gate value of 0.1 for WiFi. 

V. CONCLUSIONS 

 For a robotic system to autonomously 

navigate in an oil and gas refinery, it must be 

able to communicate with the control room 

and also localize itself. In this work we 

define the kinds of communication required 

to deploy an autonomous robot. We study 

WiFi signal propagation characteristics and 

apply the findings to determine WiFi AP 

placement. We also assign channels to 

interfering APs. WiFi fingerprinting based 

localization was implemented that achieves 

areas on able accuracy when use dalone and 

achieves desired accuracy (less than 1m) 

when combined with INS and fiducial 

marker based approach.  
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